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Acoustic radiation forces have been used to manipulate cells and bacteria in a

number of recent microfluidic applications. The net force on a cell has been subject

to careful investigation over a number of decades. We demonstrate that the

radiation forces also act to deform cells. An ultrasonic standing wave field is

created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically

swollen red-blood cells, we show observable deformations up to an aspect ratio of

1.35, comparable to deformations created by optical tweezing. In contrast to optical

technologies, ultrasonic devices are potentially capable of deforming thousands of

cells simultaneously. We create a finite element model that includes both the

acoustic environment of the cell, and a model of the cell membrane subject to

forces resulting from the non-linear aspects of the acoustic field. The model is

found to give reasonable agreement with the experimental results, and shows that

the deformation is the result of variation in an acoustic force that is directed

outwards at all points on the cell membrane. We foresee applications in diagnostic

devices, and in the possibility of mechanically stimulating cells to promote

differentiation and physiological effects. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4882777]

I. INTRODUCTION

In recent years, mechanical stimulation1,2 has been shown to be a key parameter in the dif-

ferentiation of mesenchymal stem cells. This is especially relevant to regenerative medicine,

and the growth of replacement tissue in bioreactors. In addition to influencing the differentia-

tion of stem cells into different lineages, mechanical stimulation also has physiological effects

such as accelerating ontogenesis.3

A number of strategies have been explored for applying mechanical stresses to cells includ-

ing: using elastically deformable matrices, rotational moments applied through twisting mag-

netic beads, and compressing cells within a hydrogel matrix. However, these approaches are

not ideal and frequently inhibit the free perfusion of media around a cell.

We present here an alternative based upon ultrasonic radiation forces—stresses that are

applied directly to the cell membrane due to non-linear acoustic effects. The principle of acous-

tic deformation is demonstrated here on single cells that are acoustically levitated away from

the device walls, however, it would also be possible to extend the concept to simultaneously

act on millions of cells, and on cells cultured on surfaces. Red blood cells (RBCs) are used

here as they are particularly compliant compared to other mamalian cells due to their spectrin

cytoskeleton. By osmotically swelling the cells before the experiments, a spherical shape is cre-

ated that makes small deformations easier to detect. In addition, osmotically swollen RBCs

have been used by other investigators,4,5 providing an important reference point for this study.

The mechanical stiffness of biological cells can also be used to distinguish cell types and

for the identification of diseases.6 For example, a malaria infected blood cell is known to be

stiffer than a healthy normal blood cell.7 Earlier studies have reported the deformation of RBCs
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by applying a stretching force using optical tweezers,4,5 where a pair of laser beams were used

to trap a single RBC in suspension. An optical stress is exerted, causing an elongation of the

cell body along the laser beam axis. However, optical tweezers are limited to manipulation of a

small number of cells (ultrasonic manipulation can work with thousands of cells) and there is

possibility of cell damage due to exposure to the high intensity optical field. Thus acoustic

manipulation, which has been demonstrated to separate, filter, sort and mix biological cells,8–11

has the potential to provide an alternative technique for cell deformation. In contrast to previous

experimental studies, described below, acoustically deforming a cell using radiation forces is

not straightforward because the cells have low acoustic contrast in their host medium and are

small compared to the acoustic wavelength. To overcome these limitations, we describe here a

system that uses a highly resonant cavity to achieve the required acoustic pressure amplitudes

with little associated heating. There have been a number of studies investigating the effects of

ultrasonic standing waves on cell viability and phenotype.12 At low amplitudes, no significant

effects are demonstrated during levitation.13 At higher amplitudes effects can include cell death

and sonoporation; however, our results indicate that even in cases where no adverse bio-effects

are observed significant deforming forces can be generated.

In the past, a number of studies have been carried out to demonstrate deformation of small

particles such as water droplets and bubbles using acoustic radiation force. In particular, experi-

mental and theoretical investigations were focused on understanding the phenomena and mecha-

nisms of droplet deformation and breakup. Experimental studies have reported that the equilib-

rium shape of the particle can be significantly deformed from their initial spherical shape.14,15

Marston presented a theoretical approach to calculate the shape of a droplet, deformed by a

standing wave field in one dimension:16 the scattered wave and resulting radiation stresses on

the interface were calculated for small deformations from a spherical shape. Jackson et al.17

extended Marston’s theory to a three-dimensional sound field, included gravity acting on the

droplet as a factor affecting deformation, and wrote final expressions that were valid for par-

ticles of any size, though still only valid for small deformations.

The acoustic scattering by a non-spherical object was first included by Tian et al. to deter-

mine the static deformation of an acoustically levitated drop in air.18 Approximations limited

this approach to deformed aspect ratios of less than two.19 A number of experimental studies

also supported the analytical approach, for example, Trinh and Hsu15 quantified the deforma-

tions of droplets of a range of liquids. Anilkumar et al.20 studied droplet deformation until

breakup in order to determine the threshold of drop integration.

Numerical studies have also investigated particle deformation. Lee et al. developed a nu-

merical method to study the drop instability and static deformation in a disk model.21 Shi and

Apfel22 reported another numerical method to study the static shape deformation of a liquid

drop in a gaseous environment. The method calculated the exterior sound field by solving the

line integral form of wave equation which estimated the stress profile along the drop meridian

accurately. The numerical results compared well with the experimental results by Tian et al.18

and analytical results for small deformation range.16 However, study was restricted to the condi-

tion when the inside liquid has high acoustic impedance compared to the outside and therefore,

is not suitable for biological cases where the particle and medium have similar acoustic

properties.

To support our experimental results, we model cell deformation using an efficient finite ele-

ment method23 that is valid for a cell of any size relative to the acoustic wavelength. An itera-

tive, moving mesh method is used that makes the results valid for large deformations.

II. MATERIALS AND METHODS

A. Design and characterisation of acoustic device

Our acoustic device for producing cell deformation is based around a square glass micro-

capillary with internal dimensions 100 lm � 100 lm, and wall thickness 50 lm (VitroCom

#8510, Mountain Lakes, NJ) as shown in Figure 1. The capillary forms a resonant cavity in

which an ultrasonic standing wave is formed. The resulting resonance (as discussed below)
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both manipulates cells to the centre of the capillary (permitting easier visualisation and repeat-

able experimental results) and also creates the deforming force that is the subject of this paper.

The ultrasound is excited by a 1 mm thick plate of PZT (PZ27, Ferroperm, Kvistgaard,

Denmark) of dimensions 15 mm� 8 mm glued to the capillary using epoxy (Epotek 301)

applied in a thin layer using an absorbent pad, and cured in an oven at 120 �C for 1 h. Two

such capillaries were glued parallel to the long sides of the PZT, about 1 mm from each edge

(this creates 2 resonant chambers, only one is characterized and used in the following). The

glue layer was measured as being �10 lm thick. For ease of handling, the assembly was

mounted using adhesive tape to a glass microscope slide, with glass spacers under the PZT to

ensure the acoustic resonance is not disrupted. PTFE tubing (ID 0.3 mm) was pushed �1 cm

over each end of the capillary and sealed with epoxy to enable samples to be introduced. It was

found that small variations in pressure and tube position induced unwanted flow in the chamber

(experiments are carried out at zero flow rate). To prevent this, the tubes from each capillary

were led to two reservoirs (5 ml glass bottles) whose fluid levels could be adjusted until no

flow was found across the device. Blood (see below) was introduced into one of the reservoirs,

and caused to flow through the device by pressurizing the air above the fluid using a 3 ml sy-

ringe filled with air connected to the lid of the reservoir by a luer connector glued into the lid.

A 2D acoustic model of the acoustic resonance in the capillary, shown in Figure 2, was

produced in COMSOL, modelling the fluid cavity excited by a normal acceleration of the

FIG. 1. (a) Experimental device under the microscope. This device has two parallel capillaries (only one used at a time),

which are too small to be seen, but indicated by the red-dashed lines. The black marks are ink to reduce reflections that

interfere with the imaging. (b) Schematic diagram of the device showing a cell being levitated and deformed by the axial

acoustic radiation forces (see Figure 2 for a more detailed indication of the acoustic field). The cavity has a width and

height comparable to a half wavelength at the operation frequency. Differences between the acoustic radiation pressure on

the inner and outer surfaces of the cell membrane cause deformation. Smaller lateral gradients in the velocity field align the

cell in the centre of the channel.

FIG. 2. The modelled acoustic mode in the capillary at a model resonance of 7.6 MHz. Cells experience gradient forces

both towards the kinetic energy maximum, and potential energy minimum, forming a 2D trap that holds the cell in the

centre of the capillary. Arbitrary units.
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right-hand wall (properties as listed in Table I). We acknowledge that other acoustic modes can

be produced in the capillary with different boundary conditions; however, this mode matches

well the experimentally observed radiation forces in our system inferred from observing blood-

cell movements, with cells experiencing forces both horizontally and vertically towards the

centre line of the capillary resulting from gradients in the potential and kinetic acoustic energy

densities respectively. More detailed description of the modelling method, and discussion of

how the gradients in average acoustic energy densities give rise to this effect can be found in

our previous work.24 It is the small gradient in the kinetic energy density along the pressure

nodal line that creates the vertical (lateral) components of the force that holds the cell in the

centre of the channel. In practice, the 3D nature of the real device and complex geometrical

structure produces some regions that behave as predicted in this model and others that do not,

presumably due to 3D resonances and flexural motion of the capillary walls.

Experimentally, the resonant frequency was established by exploring the frequencies in the

vicinity of the resonance predicted using the 2D numerical model. 10 lm fluorescent polysty-

rene beads (Polysciences #18140-2) were introduced and observed as a range of frequencies are

applied to the device (because there is a relatively small level of electromechanical coupling

between the PZT and cavity resonance the resonances cannot be found by inspecting the electri-

cal impedance spectrum). The PZT was driven by an RF-amplifier (ENI 240L) driven by a

sine-wave from a signal generator (TTi TG1304). At 7.900 MHz, a strong half-wave resonance

is found such that particles are both levitated and focussed laterally into a single line down the

centre of the capillary.

Optical phase contrast microscopy was used to view the deformation of blood cells using a

phase contrast objective (40� magnification, numerical aperture 0.6). The device was mounted

with the PZT plate off the optical axis, so that blood cells could be observed through the side

of the capillary, which provides a profile view of the deformation. A view normal to the trans-

ducer (which would also prevent transmitted illumination) would only show a change in appa-

rent size of the red blood cell as it is deformed. This would be difficult to distinguish from

changes in apparent cell size caused by the changes in the position of the cell relative to the

focal plane of the objective. The phase contrast between the blood cell and host fluid solution

creates a dark ring around the boundary of each cell, allowing easier measurement of its defor-

mation. However, the illumination path is partially obstructed by the transducer, reducing the

clarity of the resulting image.

Measuring the acoustic pressure amplitude within the resonant cavity is difficult due to the

confined space. The acoustic pressure amplitude inside the capillary for a given drive voltage

was found by balancing the weight of a 10 lm fluorescent polystyrene bead against the acoustic

radiation force in the manner described by Spengler et al.25 Acoustic pressure was found to be

related to drive voltage applied to the PZT by a factor of 26 kPa/Vpp 6 20%. The low accuracy

of this measurement is caused by the difficulty of ascertaining when the two forces are pre-

cisely balanced, and uncertainty in the material properties of the polystyrene beads.

B. Preparation of blood cells

Fresh rat blood was obtained as a waste product from other experiments. Blood was

removed by cardiac puncture from rats immediately following cervical dislocation. The blood

was mixed with Lithium Heparin at 20 IU/ml. Experiments were carried out within 48 h of

blood collection. The blood was centrifuged at 2000 rpm for 5 min, and the plasma and buffy

TABLE I. Parameters used in the modelling.

Cell radius 3.1 lm (Ref. 5) Frequency 7.9 MHz

Cell density 1139 kg m�3 (Ref. 28) Speed of sound in cell 1680 ms�1 (Ref. 29)

Medium density 1000 kg m�3 Speed of sound in medium 1480 ms�1

Cell membrane Young’s modulus, E 629 Pa (Ref. 5) Cell membrane Poisson’s ratio 0.499 (Ref. 5)
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coat removed by Pasteur pipette. 50 ll of the centrifuged blood was mixed with 5 ml of a hypo-

tonic solution of 50% PBS buffer (Sigma Aldrich #P4417) with 50% de-ionized water and

placed in the acoustic device’s reservoir. The resulting osmotic uptake of water by the cells

changes their morphology from the familiar bi-concave disc to a spherical shape.5 All results in

this paper are presented for this hypotonic medium, with a calculated osmolality of 148 mOsm

and haematocrit of 0.5%. Experiments were conducted at room temperature (around 20 �C).

C. Measurement of cell deformation and image processing

In order to extract, cell shape images were processed in MATLAB using an algorithm similar

to that presented by Guck.5 For each cell, the algorithm first used a polar-to-rectangular projec-

tion about the image centre (i.e., the image is “unwrapped”) to map the cell boundary to a line

crossing the image. Next, the boundary was designated as the point of minimum intensity (the

centre of the black ring created by the phase-contrast). The boundary was smoothed by taking a

spatial Discrete Fourier Transform (DFT) and discarding all but the eight lowest frequency

components before recombining them with an inverse FFT. The smoothed data was then

mapped back to its polar form. Finally, the resulting data were fitted to an ellipse using a least

squares method. The length of semi-major and semi-minor axis of the fitted ellipse represent

the diameters of the deformed cell, and the aspect ratio is calculated as the ratio between them,

with an aspect ratio greater than one representing a cell that has been compressed along the

same axis as the one seen in Figure 1.

III. THEORY AND NUMERICAL MODELLING

Numerical modelling is used here to demonstrate that the observed deformations are in

accord with those that would be created by the theory of acoustic radiation force, and to

explore the physical mechanism and typical force distributions on the membrane.

A. Acoustic radiation stresses

Throughout an acoustic field, a non-zero time-averaged stress is created by non-linear terms

in the Navier-Stokes equations. This stress is discontinuous across the boundary of a cell and

its effect can be approximated in the non-viscous regime as a stress difference.16,26

DP ¼ Pi �Po; (1)

where Pi and Po are the stresses resulting from the acoustic radiation stresses on the inside

and outside of the membrane, respectively, given to second order as27

Pjk ¼ �hP� P0idjk � q0hvjvki; (2)

where djk is the Kronecker delta, <…> represents the time average, and the time average

excess pressure is given by

hP� P0i ¼
1

2qc2
hp2i � q

2
hv2i; (3)

where p and v are the first order acoustic pressure and velocity. Thus in the inviscid approxima-

tion, it is possible to express the second order radiation stresses in terms of the first order

acoustic field variables, leading to a simplified computational method.

B. Numerical implementation

Finite element models were implemented in 3D in COMSOL multi-physics (version 4.3), a

commercial multi-physics finite element method package. The advantage of Eqs. (1)–(3) above

is that in the non-viscous approximation the acoustic radiation stress is a function of the first
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order acoustic fields. This means that it is possible to decouple the problem into a sequence of

steps rather than solving the whole system of equations simultaneously. The deformed shape is

found iteratively by successively repeating three steps until equilibrium is reached:

(1) A linear acoustic model predicts the pressure and velocity distributions on the inner and outer

surfaces of the red blood cell. In this step, both the inside of the cell and the surrounding fluid

are modelled by acoustic regions, using the properties given in Table I. A non-slip condition is

imposed at the boundary. Only a small region in the vicinity of the cell is modelled, with a

radiation boundary condition around the model boundary used to both create the acoustic field

and absorb incident radiation. We have previously described this arrangement in more detail,23

and shown it to produce accuracies of better than 1%. The osmotically swollen red blood cell

is modelled as initially having a spherical shape.

(2) The acoustic radiation stresses resulting from the first order acoustic field found in step 1 are

calculated using Eq. (1). The COMSOL operators up() and down() are required to extract the

acoustic field components on either side of the boundary. These stresses are applied to our me-

chanical model of the red-blood cell (see below) to predict its deformation.

(3) An arbitrary Lagrangian-Eulerian (ALE) moving mesh (COMOSL’s built-in implementation)

tracks the induced movement of the blood cell membrane and creates a deformed geometry

that is used as an input step for the next iteration, thus allowing for non-linear deformations.

Although this sequence could be used to predict the dynamic behaviour of the blood cell’s

deformation, we did not attempt this at this stage, as it would require the inclusion of the fluid

motion in and around the blood cell with correspondingly extended computation times, and more

difficulty in achieving numerically stable results. The mechanical model of the blood cell com-

prised a thin shell structure. This formulation allows for both membrane stresses, and bending

stresses, however, the material properties (listed in Table I) mean that membrane stresses domi-

nate the behaviour. Since in the mechanical model used in step 2, we did not model the fluid

inside the cell, we included an artificial volume dependent pressure on the membrane, added to

the acoustic stress, in order to constrain the volume of the cell to be constant. This took the form,

pvol ¼ K
ðVcell � V0Þ

V0

; (4)

where V0 and Vcell are the original and deformed volume, respectively, and K an arbitrary con-

stant, set to 1 kPa. With this constraint the cell volume was found to vary by no more than

0.5% from its initial value in the models presented here. Mechanical damping in the shell did

not affect the ultimate deformed shape—higher damping merely increased the number of mod-

elling steps required to reach equilibrium, thus we were able to choose a value that gave rea-

sonable numerical stability. At higher amplitudes, stability remains challenging, limiting our

ability to model the full range of experimental conditions.

In order to verify our mechanical model of the cell membrane, we compared it to the ana-

lytic model described by Guck.5 We applied a radially directed stress distribution (as calculated

by Guck) of

rrðhÞ ¼ r0 cos2ðhÞ; (5)

where h is the surface elevation in polar coordinates, and found good agreement with his mod-

elled shape deformations for r0 in the range 0.5 to 2.5 Pa. In this case, we did not constrain the

cell volume to be constant as Guck’s model did not do this. Applying this constraint resulted in

deformations that were approximately 50% smaller.

IV. RESULTS AND DISCUSSION

Blood cells were trapped one at a time in the active region of the capillary, and subjected

to a range of pressure amplitudes. Figure 3 shows an image of a typical deformed cell within
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the capillary. Some translational movement is also seen due to both residual fluid movement

(even small pressure fluctuations in the reservoirs induces flow), and lateral acoustic radiation

forces. Figure 4 shows a sequence of a deformed blood cell images for a range of acoustic pres-

sure amplitude from 12.9 kPa to 978 kPa, with fitted ellipses. It can be clearly observed that

increasing pressure amplitude results in increasing amounts of cell deformation towards an

ellipsoid. For each of n¼ 8 blood cells, a sequence of acoustic pressures was applied by vary-

ing the drive voltage. Cells were given 10 s at each pressure amplitude to come to equilibrium

before the corresponding image was captured for processing. The results were obtained by step-

ping each cell through a sequence of amplitudes beginning with the lowest. It was found that

the deformation of each cell was reversible—stepping back through the amplitudes resulted in

deformations indistinguishable from those measured on the way up (to within the measurement

errors of our system, found to be around 60.1 for the aspect ratio). The deformation occurred

more quickly than could be seen by the eye. We did not investigate this dynamic behaviour,

but Baskurt and Meiselman30 measured the relaxation time of shape deformations to be of order

100 ms. The temperature of the transducer was measured—at the highest pressure amplitude a

temperature rise of around 1 �C was measured on the capillary surface above the transducer. If

this technique were to be incorporated into a system which required maintenance of physiologi-

cal temperatures, this modest rise could be counteracted by reducing the ambient temperature

of the system.

Figure 5 shows the average change in aspect ratio vs acoustic pressure amplitude. It can be

seen that the deformations are comparable to those found under the action of optical forces;

Guck reports optical deformations of osmotically swollen RBCs up to aspect ratios of around

1.5.5

It would be possible to question whether the observed changes in aspect ratio were instead

due to the rotation of a blood cell of fixed bi-concave shape. However, there are two reasons to

discount this possibility:

FIG. 3. Deformation induced by acoustic radiation forces for an osmotically swollen red blood cell. The walls of the capil-

lary can be seen on either side of each image. (a) Low acoustic pressure amplitude levitates cell. (b) Deformed cell at a

pressure amplitude of 978 kPa.

FIG. 4. Images showing a single osmotically swollen red blood cell under the influence of a range of acoustic pressure

amplitudes from 0–978 kPa (going left to right). White line shows fitted ellipse.
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(a) All observed cells were found to cycle in shape with pressure. At zero pressure amplitude no

cells (out of hundreds observed), appeared deformed (indicating successful osmotic

swelling).

(b) It has been observed31 that RBCs of a bi-concave shape naturally align themselves (even at

low acoustic amplitudes) such that the plane of the disc is in the pressure nodal plane of the

standing wave field. We confirm this finding, and note that this would cause (non-spherical)

cells to appear with high aspect ratio at low pressure amplitudes, which is not observed.

It is difficult to attain close correspondence between the measured and modelled cell defor-

mation due to uncertainty in the measurement of the experimental acoustic pressure amplitude

(620%) inside the capillary. However, allowing for this uncertainty the modelled results, shown

in Figure 5 are in accord with the measured deformations. The modelled result is consistently at

the lower end of the measured range, and we speculate that there may be some systematic errors

causing this difference. Possibilities include: (a) errors in the optical measurement of shape,

since the cell boundary does not correspond exactly with the minimum in the phase-contrast

image; and (b) it has been found that acoustic streaming patterns can influence cell shape.32

Streaming was observed to be occurring in the capillary (occasional pieces of cell debris were

seen to rotate whilst trapped), however, we were unable to quantify it as our 0.5 lm diameter

tracer beads were concentrated by the radiation forces due to the relatively high excitation fre-

quency. An additional source of the variation that is observed experimentally will come from

the variability of the mechanical properties of the RBCs themselves (for example Chabanel

et al.33 show standard deviations of around 10% in the elastic moduli of membranes).

It is instructive to examine the force distribution around the cell surface as predicted by the

model. In the following discussion we define the cell equator as the region whose normals point

perpendicular to the axis of acoustic propagation (the “axial” direction), and thus lies in the

acoustic pressure nodal plane. Figure 6(a) shows the distribution of forces on both an unde-

formed cell, and the same cell at equilibrium at an acoustic pressure amplitude of 650 kPa. It

can be seen that the acoustic radiation forces exert a net outward stress at all points over the

surface of the cell. However, the outward stress is larger at the equator of the cell, resulting in

a net stretching along the acoustic pressure nodal plane. The internal forces produced by the

requirement that cell volume is preserved are thus important in causing the polar regions to be

deformed inwards. Interestingly, the radiation force induced on the membrane is not strongly

affected by the deformation seen here.

FIG. 5. Aspect ratio of the deformed blood cell shape with varying acoustic pressure amplitude. Error bars shows range of

measurements over a sample of n¼ 8 cells. Note that the measured pressure amplitude is subject to a systemic error of 620%.

034109-8 Mishra, Hill, and Glynne-Jones Biomicrofluidics 8, 034109 (2014)



At the polar regions, all velocities are directed normal to the cell surface, so it is possible

to combine the terms in Eq. (1) and express the resulting normal stress as a pressure difference,

�P ¼ 1

2
ðqo � qiÞhv2i þ 1

2
bo�bið Þhp2i; (6)

where we have also taken advantage of the acoustic pressure and velocities being continuous

across the boundary.

Similarly at the equator where the normal acoustic velocity components and pressure are

both zero,

�P ¼ � 1

2
qohvo

2i þ 1

2
qihvi

2i: (7)

Note the change of sign in the velocity contributions between these two equations. The

terms relate to the differences in the kinetic and potential energy densities of the acoustic field

either side of the cell membrane.24 In the current device, the cell is levitated at a pressure node

so the pressure dependent terms are dominated by the much larger velocity (kinetic energy)

terms. Thus, the velocity terms whose net effect depends on both the difference in density and

the difference in velocity on either side of the membrane are seen to be the important parame-

ters. Figure 7 shows a typical velocity distribution around a deformed cell. It can be seen that

the magnitude of the fluid velocity is greater around the equator, which can be thought of in

terms of the nearly incompressible medium flowing around the cell. Examining the contribu-

tions made by the various terms in Eqs. (1)–(3), it is found that at the equator this increased ve-

locity is more significant than the contribution resulting from the differing densities between

the cell and the medium.

In acoustic particle manipulation where it is the net force on the particle that is of interest,

forces are proportional to the gradients in acoustic energy densities.34 In derivations of these

net forces, the “deforming” forces calculated here, which have zero resultant force on the cell

as a whole can be neglected.35 The net forces scale linearly with frequency for a given pressure

amplitude, as the energy gradients increase. In contrast, the deforming forces do not depend on

the gradients of the field quantities, and while there is a complex interplay of parameters as the

frequency changes, there is not a clear trend of force variation with frequency. For example,

Figure 6 illustrates the force distributions at two excitation frequencies for cells in three posi-

tions: (a) at the pressure node, as found in our experiments; (b) at the pressure anti-node; (c)

half-way between these positions (a cell at this location experiences the maximum manipulation

force). It can be seen that for a levitated cell in position (a), the excitation frequency has only a

small effect, compared to the other cases. It is interesting to note that a cell on a rigid surface

FIG. 6. The normal component of acoustic radiation pressure on the surface of a red blood cell (the polar angle is zero at

the equator) for an acoustic pressure amplitude of 650 kPa. In each plot values for both the experimental frequency of

7.9 MHz and 4 MHz are shown. Radiation pressures are shown on undeformed cells, except for the trace “7.9 MHz (D)”,

which is for the cell in its deformed state. (a) For a cell positioned at the pressure node as seen in our experiments; (b) for a

cell at the pressure anti-node; (c) for a cell halfway between these locations. In each case, results for two frequencies are

presented: 4 MHz and 7.9 MHz. A positive value denotes an outwardly directed force.
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would typically experience acoustic conditions similar to that in case (b), which result in much

smaller deforming forces. In case (c), the pressure distribution is not symmetrical about the cell

equator since there is a net-force on the cell (integrating this pressure over the whole surface

has been verified to yield the net force predicted by Gor’kov’s formula34).

V. CONCLUSIONS

Ultrasonic standing wave fields have been shown to be capable of inducing deformations in

red blood cells that are comparable to those demonstrated by optical methods, with little meas-

ured heating. This has promising applications in both diagnostic and tissue engineering systems.

Modelling has shown that acoustic radiation forces can be considered the primary mechanism

for cell deformation, and that the resulting force distribution is comparable to an outwardly

directed pressure that is greater on the portion of the cell in the acoustic nodal plane. It has

also predicted that the forces experienced by cells on surfaces will be of a lower magnitude. By

changing the device configuration to a planar arrangement, there is the possibility of applying

mechanical stimulation to millions of cells simultaneously; in this case, the planar arrangement

would give rise to a more uniform field than that found in the capillary, further strengthened by

the propensity of cells to agglomerate at regions of maximum kinetic energy density. Further

work will seek to explore these configurations, and demonstrate enhanced outcomes in tissue

engineering applications.
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